Short Reports 1261

95 (10), 81 (12), 67 (50), 41 (18); IR $1680 \, \mathrm{cm}^{-1}$, $^{13} \mathrm{C} \, \mathrm{NMR}$ (100 MHz, CDCl₃) δ 13 0 (Me), 21 5 (Me), 22 8 (CH₂-2'), 24 0 (Me), 25.5 (Me), 28 3 (CH-4), 41.3 (C-6), 45.7 (CH₂-5), 138 2 (C-2), 147.7 (CH-3), 204.4 (C-1), $^{1} \mathrm{H} \, \mathrm{NMR}$ (400 MHz, CDCl₃) δ 0.97 (3H, t, J = 7.5 Hz, $\underline{\mathrm{Me}} \, \mathrm{CH}_{2}$ -2), 1 07, 1.09 (both 3H, s, 2x Me-6), 1.09(3H, d, J = 7 1 $\overline{\mathrm{Hz}}$, Me-4), 1 51 (1H, dd, J_{gem} = 13.3 Hz, J_{4} , 5 = 11.0 Hz, J_{4x} -5), 1.76 (1H, ddd, J_{gem} = 13.0 Hz, J_{4} , 5 = 4.8 Hz, J_{3} , 5 = 1 8 Hz, J_{equ} -5), 2.15 (1H, dqdd, J_{gem} = 15.0 Hz, $J_{2',2''}$ = 75 Hz, $J_{2',4}$ = 2.0 Hz, $J_{2',3''}$ = 7.5 Hz, $J_{2',4}$ = 2.19 (1H, dqdd, J_{gem} = 15.0 Hz, $J_{2',4}$ = 2.19 (1H, dqdd, J_{gem} = 15.0 Hz, $J_{2',4}$ = 2.59(1H, m, H-4), 6 36 (1H, m, H-3)

Acknowledgements—We wish to thank Dr I A. Southwell (NSW. Department of Agriculture), for supplying a sample of angustione and dehydroangustione, Mr D. Nelson for the accu-

rate mass measurements and Mr M Withers for the IR measurement

REFERENCES

- 1 Penfold, A R (1923) J Proc Roy. Soc N S W 57, 300.
- Birch, A. J (1951) J. Chem. Soc 3026
- 3 Birch, A J and Elliott, P (1956) Aust J Chem. 9, 95
- 4. Chan, W R and Hassall, C H (1955) J. Chem Soc 2860
- 5 Ensor, G R and Wilson, W (1956) J Chem Soc 4068.
- Birch, A. J., Elliot, P and Penfold, A. R (1954) Aust J Chem 7, 169
- 7 Cannon, J. R. and Corbett, N. H (1962) Aust J Chem 15, 168
- 8. Brophy, J. J., Rahmani, M., Toia, R. F., Croft, K. D. and Lassak, E. V. (1985) Flavour Fragrance J. 1, 17

Phytochemistry, Vol 28, No 4, pp 1261-1262, 1989 Printed in Great Britain

0031 9422/89 \$3 00 + 0 00 © 1989 Pergamon Press plc

A NOR-SECO-AROMADENDRANE FROM THE LIVERWORT MYLIA TAYLORII

LESLIE J HARRISON* and HANS BECKER

Pharmakognosie und Analytische Phytochemie, Universität des Saarlandes, D-6600 Saarbrucken, F R G

(Received 25 July 1988)

Key Word Index—Mylia taylorii; Hepaticae, liverworts, sesquiterpenoids, nor-seco-aromadendrane, 2-nor-1,3-epoxy-1,10-seco-aromadendra-1(5),3-dien-10-one

Abstract—A novel nor-seco-aromadendrane, 2-nor-1,3-epoxy-1,10-seco-aromadendra-1(5),3-dien-10-one, was obtained from Mylia tayloru It was identified by spectroscopic methods and chemical correlation with a known compound

INTRODUCTION

The liverwort Mylia taylorii (Hook) Gray is a rich source of unusual sesquiterpenoids. Some are derived from the aromadendrane skeleton, either by further cyclization (myliol (1) [1] and dihydromylione A (2) [2]) or by ring cleavage {taylorione (3) [3]}. Two further sesquiterpenoids, myltaylenol (4) [4] and cyclomultaylenol (5) [5], have also been reported, as well as a diterpenoid, $(15S,16S)-2\beta,16$ -epoxyverrucosan-16-ol (6) [6]. We now report on the isolation from M taylorii of a novel nor-seco-aromadendrane (7).

RESULTS AND DISCUSSION

Mylia taylorii was collected in the Bavarian Alps. The ether extract was separated by vacuum liquid chromatography [7] over silica gel and afforded compounds 1-3 which were identified by comparison of their spectroscopic properties with literature values or by comparison with authentic samples. HPLC of an early column frac-

tion yielded a novel nor-seco-aromadendrane, (7), $C_{14}H_{20}O_{2}$ (m/z 220 1458), $[\alpha]_{D}$ -25 8 (CHCl₃, c 2.89) $\nu_{max}^{cCl_4}$ 1726 cm⁻¹. The ¹H and ¹³C NMR spectra contain resonances characteristic of a 3,4-disubstituted furan [δ_{H} 7.13 (quin, J = 1.2 Hz, H-3) and 7 08 (1H, t, J = 1.2 Hz, H-1); δ_C 121.62 (s), 121.91 (s), 138 72 (d), and 138.80 (d), a methyl ketone [$\delta_{\rm H}$ 2.22 (s, H₃-15), $\delta_{\rm C}$ 29 00 (q) and 208.52 (s)], a vinyl methyl [δ_H 1.94 (d, J = 1.0 Hz, H₃-14); δ_C 8.28 (q)], a cyclopropane ring [δ_H 1 32 (dd, J = 1.2 and 8.8 Hz, H-6) and 0.82 (dt, J = 60 and 8.8 Hz, H-7), δ_C 19.20 (s), 21.75 (d), and 27.75 (d)], two tertiary methyl groups $[\delta_H]$ 1 17 and 0.89 (each s, H_3 -12 and H_3 -13); δ_C 15 73 (q) and 29.81 (q)] and two methylene groups $[\delta_{\rm H} \ 2.46 \ (t,\ J$ = 7.6 Hz, H₂-9), 1.75 and 1.48 (each m, H₂-8); δ_C 20.36 (t) and 43.89 (t)] The ¹H NMR spectrum is very similar to that of taylorione (3), except that the signals of the exomethylene cyclopentene have been replaced by those of a methyl furan This suggested that the compound is 2nor-1,3-epoxy-1,10-seco-aromadendra-1(5),3-dien-10-one (7). A small allylic coupling of 1 2 Hz between H-6 and H-1 supports this structure Ozonolysis of 7 afforded the

1262 Short Reports

known carboxylic acid 8 which was identical with the same compound obtained by ozonolysis of taylorione Therefore, 7 has the absolute configuration shown

EXPERIMENTAL

Optical rotations: CHCl₃, NMR 400 MHz (1 H) or 100 5 MHz (13 C), CDCl₃ relative to CHCl₃ at $\delta_{\rm H}$ 7 25 or CDCl₃ at $\delta_{\rm C}$ 77.00 13 C multiplicities were determined using the DEPT pulse sequence. Kieselgel 60 HR (Merck) was used for vacuum liquid chromatography (VLC) and HPLC was carried out using a Lichrosorb 5 μ silica column (25 × 0.4 cm). Petrol refers to the fraction boiling in the range 40–60°. Organic solns were dried over Na₂SO₄

M tayloru was collected in the Bavarian Alps in August 1987 Contaminating plant material was removed and the air-dried material was ground. The resulting powder (3 4 kg) was extracted with Et₂O (121) to afford a crude extract. This was partitioned between petrol and 90% aq MeOH to give two portions The MeOH-soluble portion (128g) was subjected to VLC using a gradient of EtOAc in petrol A crystalline fraction was recrystallized from petrol at -10° to give myliol (1) (1.2 g), identical with an authentic sample. The petrol-soluble portion (93 g) was chromatographed in a similar manner to give, in order of elution, the nor-seco-aromadendrane (7) which was further purified by HPLC (2% EtOAc-hexane) to give an oil (37 mg), m/z 220 1458 ($C_{14}H_{20}O_2$ requires m/z 220 1463), UV $\lambda_{\max}^{\text{MeOH}}$ nm ($\log \varepsilon$) 214 (3 67). IR $v_{\max}^{\text{CCL}_4}$ cm $^{-1}$ 2950, 2930, 2895, 2870, 1726, 1459, 1390, 1380, 1362, 1165, 1148, 1055, ¹H NMR and ¹³C NMR see Discussion, EIMS 70 eV, m, z (rel int) 220 $[M]^+$ (22), 205 $[M - Me]^+$ (9), 177 $[M - Me - CO]^+$ (19), 162 (20), 149 (45), 147 (22), 91 (37), 43 (100), taylorione (3) (105 g), identical with an authentic sample, and dihydromylione A (2) (25 mg), ¹H NMR $\delta_{\rm H}$ 2 62 (2H, m), 2 21 (1H, d, J = 19 1 Hz), 1 35 (1H, d, J = 6.5 Hz), 1.15 (d, J = 7.1 Hz, H_3 -14), 1.08 (3H, s), 1.02(3H, s), 0 87 (3H, s) and 0 62 (q, J = 8.9 Hz, H-7)

Ozonolysis of 7 A soln of the nor-seco-aromadendrane (20 mg) in EtOAc (30 ml) was cooled to -20° and a stream of ozonized O_2 was passed through the soln until a blue colour persisted. The soln was kept at -20° for a further hr after which it was evapd. The ozonide was decomposed by refluxing for 1 hr with H_2O containing a few drops of 30° /6 H_2O_2 . Extraction with EtOAc gave the crude product which was purified by CC over silicated (MeOH-CHCl₃, 1 49) to give the carboxylic-acid 8 (12 mg), $[\alpha]_D = 22.3$ (CHCl₃, c 0.1) [lit [3] = 20.6], identical with an authentic sample produced by ozonolysis of taylorione

Acknowledgements—We thank Dr R Mues (Fachrichtung Botanik, Universitat des Saarlandes), for identifying the liverwort, and the Alexander von Humboldt-Stiftung for a fellowship (to LJH)

REFERENCES

- 1 Matsuo, A, Nozaki, H, Nakayama, M, Kushi, Y, Hayashi, S, Kamijo, N, Benesova, B and Herout, V (1976) J Chem Soc, Chem Commun, 1006
- 2 Matsuo, A., Nozaki, H., Shigemori, M., Nakayama, M. and Hayashi, S. (1977) Experientia 33, 991
- 3 Matsuo, A., Sato, S., Nakayama, M. and Hayashi, S. (1979)
 J. Chem. Soc., Perkin Trans. 1 2652
- 4 Takaoka, D, Matsuo, A, Kuramoto, J Nakayama, M and Hayashi, S (1985) J Chem Soc, Chem Commun 482
- 5 Takaoka, D., Tani, H. and Matsuo, A. (1988) J. Chem. Res. (S), 130
- 6 Harrison, L. I., Tori, M. and Asakawa, Y. (1986) J. Chem. Res. (S), 212
- 7 Coll, I C and Bowden, B F (1986) J Nat Prod 49, 934